
Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Eindhoven Computer Science Security Group

Otto-von-Guericke Universität Magdeburg
Department of Computer Science

Institute of Technical and Business Information Systems
Reseach Group Multimedia and Security

Internship Thesis

Design and Implementation of a Support
Tool for Attack Trees

Alexander Opel

Supervisors:

Dr. Sjouke Mauw (Technische Universiteit Eindhoven),
Andreas Lang (Otto-von-Guericke Universität Magdeburg)

Opel, Alexander:
Design and Implementation of a Support Tool
for Attack Trees
Internship Thesis,
Otto-von-Guericke University
Magdeburg, March 2005.

i

Acknowledgements

Many thanks to all the people who contributed to the success of my internship and
this thesis. My supervisor Sjouke Mauw who offered me a big scope to realize this
project and so I had a free view on Attack Trees. Martijn Wolfs for his discussions
about Attack Trees at the beginning of the project. My office mate Koos Gadellaa
for his great support on programming issues and experienced talks. Thank you for
the fun between the working sessions. My german fellow students Lennart Nacke
and Maurice Hollmann for their support with LATEX and their ICQ and Skype talks.
Sandra Gebbensleben from the ITI Research Group on Multimedia and Security for
her feedback. Also I want to thank all the other people of the Formal Methods group
in Eindhoven. The daily lunch was always fun.

And of course thanks to my family especially my father who was nearly always
daily attainable (the internet is a great invention). Thank you.

Alexander Opel, March 2005

ii

iii

Declaration

I declare hereby, that the present work was created independently and only with
allowed appliances.

Eindhoven, March 11, 2005 Alexander Opel

iv

v

Overview

Viruses, worms and trojans are only some threats which computer systems are ex-
posed nowadays. To get an overview about all possible attacks to a system, Attack
Trees could be used. Attack Trees were first introduced in the literature by Bruce
Schneier in 1999 [1]. In the december redaction of the Dr. Dobb’s Journal his article
has been published. Thereby, he describes Attack Trees as follows. “Attack trees
provide a formal, methodical way of describing the security of systems, based on
varying attacks. Basically, you represent attacks against a system in a tree struc-
ture, with the goal as the root node and different ways of achieving that goal as leaf
nodes.” An Attack Tree can represent each opportunity for an attack that might be
used to compromise systems. In that way, it is possible to predict how and where
intruders pose the greatest threats against a system [2]. Reasonable precautions for
securing the system can be taken with these information.

However, this article offers only a rough overview of the possibilities which the At-
tack Trees can offer. In the literature, which deals with Attack Trees, often only a
reference to this paper can be found. Further information, which go more deeply into
the detail, are missing and not available respectively. The intention of this internship
was to get a deeper view on Attack Trees, to find out where their origin can be found
and what problems might occur with the Attack Trees described by Bruce Schneier
and how they can be solved. In addition some new extensions have to be worked out
which might make Attack Trees more useful and extend their function range.

The completeness of an Attack Tree depends on the overview the originator has
of the whole system, and the possible events that might occur to the system. In
small systems it is possible to keep a complete overview, but in a big environment
the overview is rapidly lost [3]. In order to deal with this, the second goal of this
internship was to implement a freeware tool, that offers the opportunity to represent
an Attack Tree graphically. Thereby, it is easy to expand an Attack Tree, and if
new attacks occur it is possible to intervene fast. Thus, the tool has to deal with
the extension of an Attack Tree, too. Therefore a complete new program has to be
designed. This covers the creation of an user-friendly graphical user interface, the
necessary data structures and algorithms, and a file format for a later reuse of the
Attack Trees.

vi

At the end of this internship a software tool prototype was implemented, a XML-
based file format was adapted and three new extensions were analysed and integrated
into the program. Thereby some new cases arised and their possible solutions were
worked out.

Parties involved

This internship was completed at the Eindhoven University of Technology, the Nether-
lands.

On the part of the TU/e this project was supervised by Sjouke Mauw, associate
professor for the department of “Mathematics and Computer Science”. He is member
of the “Formal Methods” group and co-founder of the “Eindhoven Computer Science
Security Group”.

The supervisor from the University of Magdeburg for this project was Andreas
Lang, associate for the “Department of Computer Science”. He is member of the
“Research Group Multimedia and Security” at the “Institute of Technical and Busi-
ness Information Systems”.

Tasks

The main goal of this internship was to design and implement a support tool for
Attack Trees. For that purpose an overview of Attack Trees had to be worked out at
the beginning. This included the study of literature, existing tools and the talk with
people that are more experienced in the field of Attack Trees. Additionally, some
new expedient extensions should be analysed. For this purpose the ideas of three
extensions were given: The enhancement of the calculation formulas, the combination
of same content in different tree parts and the possibility to add countermeasures
directly in the Attack Tree.

The sub-goals were to get a definition of an Attack Tree – also for the new
extensions – , to design the program, an implementation of the design and finally a
test of the tool. The design of the program included the necessary data structures, the
algorithms, the graphical user interface and the inputs and outputs of the program.
The program ought to be written in a modular fashion, to make it easy extendable.
In addition, the task was to improve the tool by an incremental approach of the
design and the implementation.

CONTENTS vii

Contents

Declaration iii

Overview v

Parties involved . vi

Tasks . vi

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Expected Results . 2

1.3 Thesis Structure . 2

2 Risk Analysis 4

2.1 Forward-arranged Analysis Techniques 5

2.1.1 Failure Modes and Effects Analysis 5

2.1.2 Event Tree Analysis . 6

2.2 Backward-arranged Analysis Techniques 7

2.2.1 Fault Tree Analysis . 7

2.2.2 Attack Tree Analysis . 9

3 Attack Tree Extensions 13

3.1 Extension: AND/OR Formulas . 14

viii CONTENTS

3.2 Extension: Confluent Branches . 16

3.3 Extension: Defense Nodes . 17

4 Design and Implementation 19

4.1 Functionality . 19

4.1.1 Creating and Modifying Trees 21

4.1.2 Add Values to the Tree . 23

4.1.3 Automatic Calculation in an Attack Tree 24

4.1.4 Creating Attacks . 24

4.2 File Format: XML . 26

4.2.1 The GraphML File Format . 26

4.2.2 Extensions and Definitions . 28

5 Test of the Tool 30

5.1 General . 30

5.2 Extensions . 31

5.3 Calculation Process . 31

6 Conclusion and Further Development 34

6.1 Conclusion . 34

6.2 Further Development . 35

Bibliography 39

A Examples 43

A.1 XML Example . 43

A.2 FMEA Table Example . 45

B Logical Operators 46

B.1 Tables . 46

LIST OF FIGURES ix

List of Figures

2.1 Simplified Event Tree . 7

2.2 Simple Structure of a Fault Tree . 8

2.3 Simple Representation of an Attack Tree 9

2.4 Simple Example of an Attack Tree 10

2.5 Simple Example of non-boolean values in OR and AND nodes 11

2.6 Textual Representation of the running Example 12

3.1 Node with mixed operation-type values 16

3.2 Example with confluent branch . 17

3.3 Example with a defense node . 18

4.1 The Program with the continuous Example 20

4.2 Pop up Menus on a Leaf Node and an inner Node 21

4.3 Connection from a Node to a Leaf of a lower Layer 22

4.4 Dialogs for Adding Value Types . 23

4.5 Mask to set the Profile of an Attacker 25

4.6 GraphML example with all properties 27

4.7 Schematic Representation of the XML Example 28

5.1 Solution of the undefined case . 32

5.2 Wrong highlighting of the tool . 33

5.3 Node with mixed operation-type values 33

A.1 Result of the XML Example . 44

x LIST OF FIGURES

A.2 Example of a FMEA Table . 45

LIST OF TABLES xi

List of Tables

3.1 Attack Tree operations by Bruce Schneier 14

3.2 Possible Operations on Nodes . 14

3.3 Example for possible operations on different value types 15

3.4 Possible combining/non-combining Operations on Nodes 15

B.1 Table for the AND Operator . 46

B.2 Table for the OR Operator . 46

B.3 Table for the NAND Operator . 46

B.4 Table for the NOR Operator . 47

B.5 Table for the XOR Operator . 47

xii LIST OF TABLES

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Motivation

Nowadays the security of computer systems is a very important area in the informa-
tion technology industry. By the increasing cross-linking of computer systems and
the associated risks like trojans, viruses and Distributed Denial of Service (DDoS)
attacks1 this industry gains more significance. The accociated possible threats like
the unintentional stealing of passwords, the destruction of data or the attempt to
make computer networks unattainable can be life-threatening for a company. To deal
with new security threats, computer companies spend much money. Before money
is spent for security issues, the causes and the attack possibilities respectively have
to be worked out. For this task the risk analysis can be consulted.

As a part of the risk analysis, the Attack Tree analysis offers possibilities to
find out such attacks and causes – obvious threats as well as initially not regarded
threats. Since these can produce harm to security relevant systems, the Attack Tree
analysis helps to secure systems by finding preferably all attacks. The advantage
of the Attack Trees is the easy understanding of this method and the possibility
of receiving fast results. Thus, it is usable for both beginners and professionals.
Additionally, it can be used for simple as well as harder problems.

Since it is easy to get familiar with possible eventualities, the Attack Tree method
can also be used for brainstorming. However, in such cases the work with pencil and
paper is not very suitable. Easily operated software can support the work with
Attack Trees. Software tools give the opportunity to make changes shortly and show

1A denial-of-service attack (also, DoS attack) is an attack on a computer system or network that
causes a loss of service to users, typically the loss of network connectivity and services by consuming
the bandwidth of the victim network or overloading the computational resources of the victim
system. Attempts to ”flood” a network with bogus packets, thereby preventing legitimate network
traffic, are the most common form of attack, often conducted by disrupting network connectivity
with the use of multiple hosts in a distributed denial-of-service attack or DDoS. Such attacks can
consume the resources of intervening systems and networks over which the attack is transmitted.
[23]

2 1.2. Expected Results

results immediately. This supports the search for possible vulnerabilities.

Since Attack Trees were introduced in 1999 by Bruce Schneier [1], the risk
analysing method of Attack Trees was not followed up intensively. Only in the
last years it is mentioned in papers as a simple examination method for security
relevant systems. But information which goes deeper into detail are available barely.

With the todays state of the art, only the company Amenaza Technologies Lim-
ited [22] offers a high sophisticated tool – SecurIT ree – for Attack Tree modeling.
This tool supports also the creation and modification of Attack Trees. Also it has a
large scale of analysis techniques. But SecurIT ree is an commercial program. Only
a time-limited demo version is available for free. Thus no extensions can be made
for new researches like it would be possible with open source software. Also the
program has a closed file format. This prevents a further processing of Attack Trees
with other resources or programs.

Thus this internship offers the possibility to get deeper into the field of Attack
Trees by creating a new software tool. By the implementation of the Attack Tree
method with new functionalities in a new tool, new experiences can be won, which
can serve as basis for later research.

1.2 Expected Results

The expected result of this internship was a tool that can support the work with
Attack Trees. For this reason the implemented tool should make it easy to create,
manipulate and visualize Attack Trees. This included the support of standard editing
functions like creating, deleting and changing parts of an Attack Tree. Also the new
extensions mentioned in the Task -Section should be implemented and the experience
with these new functions had to be analysed. Additionally, the tool should supported
simulations of attackers profiles in order to examine possible danger scenarios. To
inspect the tool, some tests had to be made. The results of the tests should help to
improve the tool in next development stages. To support a later reuse of an Attack
Tree, a XML-based file format had to be worked out as output of the program. Since
XML is an open standard, it is easy for other users to work with created Attack Tree
in further processings. Also the structured content and the easy processing of XML
files is advantageously.

1.3 Thesis Structure

This internship thesis is divided into six chapters. The following Chapter two ex-
amines the origin of Attack Trees in the Risk Analysis. For this purpose similar
techniques are described and Bruce Schneier’s view on Attack Trees like he pub-
lished in a paper [1] are explained. The next chapter shows how Attack Trees could
be extended with additional functionality. Three extensions were analysed and why

Chapter 1. Introduction 3

and/or how they can be used. Chapter five will show how the implemented Attack
Tree software tool is designed and how the Attack Trees with the extension men-
tioned above are realized. This chapter also takes a look on the XML-based file
format, how the Attack Trees are stored and how the extensions are integrated. In
the next chapter the experiences with the software tool during some program tests
are discussed. Thereby, the software tool was analysed in general, and the realisation
of the extensions and the calculation process were examined. Possible problems are
shown and their solutions are given. Finally, in the sixth chapter a conclusion is
given and some suggestions for further development are made.

4

Chapter 2

Risk Analysis

This chapter explores the origin of Attack Trees. Similar techniques, which also
have their roots in the risk analysis, are explained and the Attack Trees like Bruce
Schneier described them are analysed.

Decisions are made every day. For each decision the risks must be balanced, which
influences the choice. With the help of the experiences in the past the estimation of
risks has been learned. The risk level decides whether the options, which are at the
disposal, are accepted or rejected. Mostly, it is the goal to reduce or avoid the risks.

Often the risk structure of a given problem is very complex. Therefore it can
happen that personal experiences are not sufficient in order to estimate a risk. In the
past, statistics were used to face that problem. Statistics make it possible to foresee
probabilities of a possibly arriving event in order to meet appropriate arrangements.
In some situations, statistics of past events are not sufficient during the examination
of a risk. This is usually the case with consciously accomplished, malicious attacks.
Such attacks often cause large harm with relatively small exertion.

However, each decision can also be criticized – independently which option has
been chosen. Was a possibility ignored or was a possibility neglected and/or regarded
too intensively? To solve these questions the risk analysis can be used [15].

In system design and realisation there are some established procedures to discover
errors and vulnerabilities and trace them back to their origin. But mostly the proce-
dures are used in a safety context rather then in security. In the safety area usually
events play a role, which are caused unintentionally or by higher force like environ-
mental influences. These events are coined/shaped by a coincidental distribution.

In the security area events are provoked methodically and malicious which permits
hardly a meaningful probability modeling. Therefore often only rough probability
rasters are present. They permit only a qualitative statement. Qualitative security
adapted analysis methods help to recognize and evaluate malicious influences of the
environment on the system. For example, they can be used during the creation pro-

Chapter 2. Risk Analysis 5

cess of computer software or for analysis of security areas like financial institutions
or strongrooms.

In every state of a development process, risk analysis can be used. Since vulner-
abilities have often their origin in fundamental lacks, system requirements and rough
specifications should be analyzed accurately. For example wrongly classified environ-
mental and application conditions for a system, or missing relevant system functions,
which are ignored in the specification and which have to be integrated in later phases.

These aspects can entail malfunctions. In order to avoid these malfunctions and
to ensure safety/security, the risk analysis offers different analysis techniques.

The Preliminary Hazard Analysis (PHA) offers first evaluations and recognitions
of system-critical ranges. It is used in later states of the requirement analysis and in
early states of the development process. With the PHA critical areas can be found
and first evaluations for further processings can be done. But this method isn’t good
formalized. Typically a brainstorming is used for obtaining results.

In order to evaluate potential weak points in the concept, formalized analysis tech-
niques can be accomplished. They can be categorized in forward-arranged analysis
techniques and backward-arranged analysis techniques. [16]

2.1 Forward-arranged Analysis Techniques

Starting point of the forward-arranged analysis is an elementary disturbance of a sys-
tem, which emanate from user, environment or subsystem error. This analysis tech-
nique points out, how the disturbance spreads in the system. Whether it increases or
decreases or it is noticed as externally observable failure. Typical forward-arranged
analysis techniques are the Failure Modes and Effects Analysis and the Event Tree
Analysis.

2.1.1 Failure Modes and Effects Analysis

Failure Modes and Effects Analysis, or FMEA, is a methodology for identifying the
potential failure modes (e.g. a battery fails to provide adequate power, a switch fails
to open or a motor fails to operate) that a product or process may encounter. The
risks associated with these failure modes are assessed and prioritized according to
their urgency afterwards. Thus, the prevention of the more urgent failure modes,
i.e., the ones that are most likely to cause serious harm to a company, can be done.
Generally, the outcome of the FMEA is a table, which documents each component’s
failure mode, it’s cause, and the corresponding effects [24]. See Appendix A.2 for an
example.

6 2.1. Forward-arranged Analysis Techniques

”The FMEA is a proactive analysis tool, allowing engineers to anticipate fail-
ure modes even before they happen, or even before a new product or process is
released. It also helps the engineer to prevent the negative effects of these fail-
ure modes from reaching the customer, primarily by eliminating their causes and
increasing the chances of detecting them before they can do any damage.” [17]

The Failure Modes and Effects Analysis is a qualitative and quantitative tech-
nique, which judges from well-known causes to unknown effects and is an inductive
method accordingly. Since the FMEA needs the knowledge of the whole system, it
is used late in the life cycle [16].

In 1949 the FMEA process was originally developed by the US military. Af-
terwards it was used for applications in space travel, chemical industry and car
development. It is an integral part of any ISO 9000 compliant quality system [18].

2.1.2 Event Tree Analysis

The Event Tree Analysis, or ETA, also provides a qualitative and quantitative eval-
uation. The analysis is based on identification of the effects that a failure (of the
initial event, i.e. the root of the tree) can produce. The ETA is based on binary
logic, in which an event either has or has not occurred or a component has or has
not failed. An Event Tree can be visualized as a tree structure. One node has only
two children (yes or no, failed or not failed). Each path of the binary tree can be
assigned with a probability of occurrence. At the end of each path the probability
of the possible outcome can be calculated [6, 7].

Figure 2.1 shows a simplified Event Tree. The example1 illustrates an Event
Tree of a fire protection which is provided by a sprinkler system. If fire spreads, a
detector will or will not detect the rise of the temperature. If the detector should fail,
extensive damage would be the result. On the other hand the question would arise
whether the fire alarm functions duly. No matter what the answer is, the fire could
be brought under control by the fire sprinkler. However, the functional efficiency
decides on the possible damage of the building. As Figure 2.1 shows, an event in
the Event Tree has only two alternatives – a positive and a negative. Also only one
branch of the Event Tree indicates that all subsystems have succeeded.

Event Trees also describe the path from well-known causes to unknown effects and
they are also an inductive method accordingly. Towards the FMEA, the Event Tree
Analysis can be used during each phase of the development process. The obvious
disadvantage of the ETA is the exponential extension of the event combinations to
the basis events. For n basis events there are 2n event combinations. Thats why
ETAs could only be used for small systems or small components of larger systems
[19]. However, in literature this fact is not clear. In some sources the number of
event combinations is less than 2n. Thus, fewer event combinations are also possible

1taken from [7]

Chapter 2. Risk Analysis 7

Figure 2.1: Simplified Event Tree

[7]. As in Figure 2.1 can be seen, the tree does not need to be divided further if no
fire starts. It would not make sense to check, if fire is detected when no fire starts.

2.2 Backward-arranged Analysis Techniques

A backward-arranged analysis technique starts from an externally observed failure
and explores the causes which may have produced the failure. These causes are
reduced again to elementary causes until a detailed overview about the potential
system weaknesses was created. With the knowledge of the weaknesses, suitable
countermeasures can be met or the weaknesses can be rejected as irrelevant or neg-
ligible. A typical backward-arranged analysis technique is the Fault Tree Analysis.
Particularly for the field of security another backward-arranged technique – the
Attack Tree Analysis – is used.

2.2.1 Fault Tree Analysis

The goal of the Fault Tree Analysis, or FTA, is to determine possible combinations
from causes which can lead to certain unwanted events. They are called Top Level
Events, or TLEs. Unlike natural trees, Fault Trees grow downwards from above.

8 2.2. Backward-arranged Analysis Techniques

Figure 2.2: Simple Structure of a Fault Tree

Fault Trees consist thereby of several levels of events, which are so linked with one
another that events of one level is the result of events of the underlying level. Thereby
the events are linked by two different kinds of logical operators (gates) [16]. An AND
gate represents a condition in which all the events shown below the gate must be
present for the event shown above the gate to occur. This means that an event will
only occur, if all of the direct underlying events occur simultaneously. An OR gate
represents a situation in which any of the events shown below the gate will lead to
the event shown above the gate. The event will occur only if one or any combination
of the direct underlying events occures [20]. The further one pursues the nodes in
the tree downward; the overview becomes the more precise. The lowest-level events
in each branch of a Fault Tree - the leaf nodes of a tree - are referred to as Basic
Events. These Basic Events are already precise enough. They do not need to refine
further.

Figure 2.2 shows a simple structure of a Fault Tree. In this example2 the Top
Level Event (D) is only fulfilled if both events (A and E) of the underlying layer take
place, since both are connected via an AND gate. In order to fulfill event E at least
one of the Basic Events (B or C) at the lowest layer have to occur. Due to the fact
that they are connected via an OR gate, it is already sufficient that one Basic Event
succeeded.

2taken from [16]

Chapter 2. Risk Analysis 9

Figure 2.3: Simple Representation of an Attack Tree

This kind of Fault Tree describes how an event can occur, but not the chance of
its occurrence. Therefore this simple Fault Tree model is reduced in its significance
and needs to be extended.

Based on statistics of historical data, the probability of failure is given for the
Basic Events which represents hardware, software and human failures [21]. With
these probabilities it can be calculated how dependent components of this subsystem
can be affected. Reliability statistics of individual components offer the opportunity
to calculate the prospective reliability of the entire system.

The Fault Tree Analysis is a deductive technique which can produce a qualitative
analysis of the system. With the extension of probabilities the Fault Tree Analysis
can also be accomplished quantitative [16].

However, there are some events for which no statistics or historical data are
available. These events are often produced by intelligent, hostile attackers. In order
to be able to estimate risks, for which there are no statistics, the Event Tree technique
must be extended. This extension is known as the concept of the Attack Trees.

2.2.2 Attack Tree Analysis

In december 1999 the Dr. Dobb’s Journal published an article by Bruce Schneier
about a method to describe the security of a system [1]. As the basis for his descrip-
tion he used varying attacks, how a system could be compromised. To illustrate a
set of possible attacks with a certain goal, he formed a so called Attack Tree. In the
root node of the tree the goal of an attack is shown. To achieve this goal there are
different ways, described in child nodes of the root node. Each child node is thus a
sub goal in the tree. The branches of the tree are divided until no further sub goals
seems to be possible. A node without children is called a leaf node. Any path from
a leaf node to the root node represents a possible attack against the goal of the root
node.

In an Attack Tree there are two different type of nodes: AND nodes and OR
nodes. At OR nodes a minimum of one sub goal has to be fulfilled to achieve the
goal of the OR node. The sub goals are alternatives. At AND nodes each sub goal
has to be achieved. Thus they form the steps to fulfill the goal. As one can see in

10 2.2. Backward-arranged Analysis Techniques

Figure 2.4: Simple Example of an Attack Tree

Figure 2.3 one has to achieve SubGoal 1 or SubGoal 2 for the root node goal. In
order to achieve SubGoal 1, leaf node 1 and leaf node 2 have to be fulfilled. To
achieve SubGoal 2, one of the remaining leaf nodes actions has to be fulfilled. Up to
here the structure of an Attack Tree is similar to the Fault Tree structure mentioned
in Section 2.2.1.

As determined before in this chapter, there are some threats where no statistics
are available. Threats which originate from intelligent, hostile opponents. Neverthe-
less, there are some possible factors which can influence the behavior of the attacker.
If an attack should be accomplished, an aggressor must have certain resources which
are necessary in order to use the errors of the system. If the attacker has only lim-
ited resources available, his possible attacks are also restricted. Examples of such
resources are the money which an aggressor needs to accomplish an attack, the tech-
nical skill level or the time which he needs to perform an attack. The Attack Tree
Analysis deals with the limitation of resources to determine the probability of an
attack more exactly.

For further explanations a running example will be taken. In Figure 2.4 an
example can be seen for gaining access to a building. The intruder could gain the
access by:

• breaking the window

• breaking the door

• convincing, threatening or bribing a locksmith

• acting like authorized individuals AND wearing appropriate clothings to follow
these people into the building

• stealing the door key

• borrowing the door key to go inside the building with a key.

Chapter 2. Risk Analysis 11

If a tree is built up, only values to the leaf nodes can be assigned, because these
are the attack options for the system. The values of the AND and OR nodes are
results of the values of their sub nodes. For example, as one can see in Figure 2.4
there are two different values a node can adopt. An action of a node can be possible
or impossible. With the values in the leaf nodes, the values of the other nodes can
be calculated. The value of an OR node is possible, if any of the children nodes is
possible. The OR node is impossible, if all children are impossible. If all children
of an AND node are possible, the AND node becomes also possible, consequently it
gets impossible, if a minimum of one of the children is impossible. Besides possible or
impossible other boolean values like special equipment needed or no special equipment
et cetera can be assigned. The calculation of the node values takes place according
to the same principle.

Furthermore it is possible to assign non-boolean values. For example the values
of the leaves could be the costs of this special action or the time that is needed to
perform the action. But with non-boolean values it is not possible to use the same
calculation operations. To calculate the node values up to the root, Bruce Schneier
defined that for an OR-node the cheapest child value represents the node value. For
the AND nodes the summation of all child values (see Figure 2.5) gives the resulting
outcome.

The combination of both value types is also possible. Thus the profile of an at-
tacker can be described better. By reviewing an attacker profile the resources the
attacker deals with are analysed – the money, time, technical skill level. For in-
stance, the case where the intruder wants to break into the house with no equipment
and in the shortest time can be considered. The attacker’s profile could now be called
Shortest Attack with no Equipment. The structured handling with the eventualities
gives the possibility to learn much about the system’s security. With this knowledge
the vulnerabilities of the system can be secured. Also it is possible to create differ-
ent attack profiles for different attack strategies or resources. In that way, adequate
countermeasures can be developed. For example, it could be better to put a key at
a safe place than to buy a safer and much more expensive lock.

Besides the graphical representation of a tree, a textual representation is also possi-

Figure 2.5: Simple Example of non-boolean values in OR and AND nodes

12 2.2. Backward-arranged Analysis Techniques

1 Goal: Gain Access To Building (OR)

1.1 Window (OR)

1.1.1 Force

1.2 Door (OR)

1.2.1 Without Key (OR)

1.2.1.1 Force

1.2.1.2 Locksmith (OR)

1.2.1.2.1 Convince

1.2.1.2.2 Threaten

1.2.1.2.3 Bribe

1.2.1.3 Follow Authorized Individuals (AND)

1.2.1.3.1 Act Like Them

1.2.1.3.2 Wear appropriate Clothing

1.2.2 With Key (OR)

1.2.2.1 Steal Key

1.2.2.2 Borrow Key

Figure 2.6: Textual Representation of the running Example

ble. For this representation of the running example see Figure 2.6. This description
serves as basis for the new developed tool mentioned in Chapter 4.

An undefined Case

In Bruce Schneier’s paper an undefined case arises. If more than one value of the
same type in the nodes is present, it is possible that the calculation isn’t unique and
consequently undefined. For example, an attack goal with two OR-connected leaves.
Each leaf has a value for the time and a value for the money. So, if five minutes and
three euros for leaf one were needed and three minutes and five euros for leaf two,
the goal becomes three minutes and three euros if each value is calculated separately.
But if an attack should be simulated where the attacker wants to break in as fast as
he can and on the cheapest way (attack profile: Cheapest Attack in shortest Time),
the values of the attack goal are undefined. Which values are chosen from which
leaves? To solve this dilemma a rank of the properties (see Section 5.3) has to be
established.

Chapter 3. Attack Tree Extensions 13

Chapter 3

Attack Tree Extensions

The Attack Tree Model offers some advantages in the work with possible threats.
The hierarchical structure can simplify navigation and enable multiple experts to
work on different branches of a tree in parallel. The concept of Attack Trees is easy
to understand, allowing a wider range of persons to take advantage of an Attack
Tree or to contribute to it. The simple visual representation of the possible threat
scenarios makes it easy to get a general idea of the whole system. With this concept
it is easy to expand the tree in order to react fast to new threats. Another advantage
is the reuseability of trees or parts of trees. Often some different systems have
similar vulnerabilities. Consequently the reuse of trees and parts, respectively, saves
time and money. Nevertheless there are also some disadvantages. The creation of
an complete Attack Tree is practically impossible. It always depends on the skills
and knowledge of the creator. A realistic estimation of the resources at the leaf
nodes is also a difficult matter. The context plays also a role during the estimation
process and thereby the reuse of the estimation values is often not possible without
adaption[11, 12].

Finally, the structure of the AND/OR nodes can reduce the functionality. Some-
times, there are good reasons for a node to be both AND and OR node. Also different
parts of the tree can have the same origin. This leads to the fact that the tree is
expanded unnecessarily.

During this internship, the Attack Tree concept by Bruce Schneier was extended.
To deal with these structure and formula problems three extensions were developed.
The first extension – the AND/OR Formulas – offers more possibilities to handle
values in the tree. The second one – the Confluent Branches – can be used to reduce
the size of the tree and can serve the clarity. The third extension – the Defense
Nodes – shows a possibility to add a countermeasure to the tree.

14 3.1. Extension: AND/OR Formulas

3.1 Extension: AND/OR Formulas

Bruce Schneier only described two types of nodes - the AND nodes and the OR
nodes. As illustrated in Figure 2.5 of Chapter 2 at least one sub goal has to be
fulfilled if an OR node is present. In the case of an AND node all sub goals have to
be fulfilled. In the way that a continuous value is present the calculation is either the
summation of all children values (AND node) or the value becomes the minimum
value of all children values (OR node). Thus, in the example the attack goal with
the two OR connected sub goals becomes 150 for the value type money since the
minimum value of the two children is taken. In the case of the AND connected sub
goals the attack goal gets 550 for the value type money because the values of the sub
nodes have to be added. If boolean values are present the node types correspond to
the boolean operations. With the restriction to these four formulas (see Table 3.1)
the functionality of an Attack Tree is limited.

operations for AND node OR node
non-boolean values summation minimum

boolean values AND OR

Table 3.1: Attack Tree operations by Bruce Schneier

In the extension, described in this Section, more operations to both types of
nodes can be assigned. Besides the summation operation for AND nodes and the
minimum operation for OR nodes a maximum operation, an average operation and
a product operation for non-boolean values can also be used. Now all five operation
can be assigned to both of the node types. Thus it is possible that the AND nodes
become the minimum of all child nodes of a value type and the OR nodes become
the summation of all their children nodes of a value type. For boolean values only
operations which are commutative and associative can be used. Due to the fact that
the order of nodes can differ, the operations have to have these properties. Thus the
logical operations AND, OR, NAND, NOR and XOR are supported (see Section B.1
for the logical tables). As in the case of the non-boolean values all 5 operations to

operations for operations for
boolean values non-boolean values

AND Minimum
OR Maximum

AND/OR nodes NAND AND/OR nodes Summation
NOR Average
XOR Product

Table 3.2: Possible Operations on Nodes

Chapter 3. Attack Tree Extensions 15

operation for AND nodes OR nodes
value type 1 (e.g. money) minimum average
value type 2 (e.g. time) summation maximum

value type 3 (e.g. need for equipment) AND NOR

Table 3.3: Example for possible operations on different value types

both types of nodes can be assigned. Finally there are two types of nodes (AND and
OR Nodes) in the tree. For each value type it is possible to assign one of the five
operations to each node type (see Table 3.2 for the possible operations and Table 3.3
for an example).

Now one may ask if the differentiation between the operations in AND and OR
nodes makes sense. The advantage in this extension is that for both node types
operations whose results are affected by more than one value (for example: OR -
summation, AND - average) are possible. Also it could be possible to add more node
types. Consequently it might be better not to use AND and OR nodes any longer
but node type one, node type two and even node type three etc. However, this order
can cause confusion. Trees, whose formulas could be provided actually in a general
manner, are obstructed by confusing formula allocations in easy interpreting. For
example, Trees could be created, whose AND-nodes contain the OR-formula and the
OR-nodes contain the AND-formula.

Another suggestion is that AND nodes only have the combining operations like
summation, average, product, AND and NAND and the OR nodes have the mini-
mum, maximum, OR, NOR and XOR operations (see Table 3.4). This case serves
more the understanding but the combining possibilities decrease and the case of
mixed operation types doesn’t occur. Accordingly it wouldn’t be possible to have for
example values for the skill level and time in a node, where the operations are the
maximum for the skill level and summation for the time (see Figure 3.1). The lack
of this possibility would restrict the functionality of the Attack Tree significantly.

However, since the Attack Trees should be provided with more functionality, the

AND OR
combining formulas non-combining formulas

Summation Minimum
non-boolean values Average Maximum

Product
AND OR

boolean values NAND NOR
XOR

Table 3.4: Possible combining/non-combining Operations on Nodes

16 3.2. Extension: Confluent Branches

Figure 3.1: Node with mixed operation-type values

first case has been chosen. In this case – like also generally – the creator should know
exactly, what makes sense. It might be wise to exclude some confusing combinations
– like e.g. the boolean AND-formula in an OR-node – from the beginning.

3.2 Extension: Confluent Branches

During the construction phase it might be possible that some different parts of the
tree system have the same threat origin. In this case it should be possible to work
on this threat at only one position. This possibility has been implemented as a new
extension: the Confluent Branches. This means that a node or leaf could have more
than one parent. In that way the Attack Tree becomes a graph. This extension serves
the clarity in an Attack Tree. Without this functionality two different creation teams
could generate two different tree branches although it is the same threat. Even if the
tree has the same structure in both branch parts the Confluent Branches functionality
can save memory in the Attack Tree data and file structure.

In the running example (Figure 3.2) the door can be opened by using force and
also the windows can be broken by using force. Both tree branches can be joined
and only one node for this action is necessary in the tree. Of course, it is possible
that more than two parts can be joined.

However, some things have to be considered. The respective tree parts, which are
joined, must request also the same resources. The tree structure leads to the same
action but it could be possible that the resources for the actions are different. Like
if is the case with the extension before, the creator has to take a look at the sense
of each combination. This is also required if the tree is expanded at a part of a tree
which is the result of confluent branches.

Chapter 3. Attack Tree Extensions 17

Figure 3.2: Example with confluent branch

3.3 Extension: Defense Nodes

If a profile of an attacker is present, it is possible to put oneself in the position of
such an attacker and his path through the tree can be traced. For example, if the
attacker has only 20.000 euros for an attack available he uses the cheapest attack
against the system to maximize his proceeds (e.g. the outcome of this attack goal is
only 20.000 euros worth). To be sure that the intruder can’t take the cheapest path
an adequate countermeasure – a Defense Node – could be added. Consequently the
costs grows and this attack isn’t worthwhile anymore for this attack profile.

With this new extension the influence of a countermeasure to the system can be
evaluated. For the first time it is possible to work during the development process of a
system with countermeasures against threats the system’s developer is worried about.
By adding Defense Nodes it is possible to observe changes of the security situation
in the entire system. Thus, it is possible to identify the possibly next attack targets
and secure the system at these positions by adding appropriate countermeasures.

In the example (see Figure 3.3) a break-in through the windows should be elimi-
nated. If secure materials like shatterproof glass is used the window can’t be broken.
Finally, the break-in through the windows isn’t possible anymore. Since the Force
node isn’t only connected to the window branch the defense node has also influence
to the door branch of this Attack Tree.

This Defense Nodes extension is a simple version to add a countermeasure. A
disadvantage of this kind of Defense Nodes is that only defenses in leaf nodes have
an influence to the Attack Tree system. If new attacks against these defenses arises
and are added, the functionality of the Defense Node is lost. In order to work ar-
round this the functionality could be further extended that countermeasures have
a relative influence on threats. This means, that for example a non-boolean value
could be increased by 10 percent as a result of a defense. Consequently, it might
be possible to add a defense inside the tree rather than leaf nodes. For practical
application this enhancement needs more research, thats why it is not implemented
at the moment.

18 3.3. Extension: Defense Nodes

Figure 3.3: Example with a defense node

With these extensions the functional range of Attack Trees can be enhanced. Now, it
is possible to combine resources in much more versions than Bruce Schneier described
in his paper. The first extension offers the user to create an individual Attack Tree
which is adapted to his demands. To serve the clarity in an Attack Tree the second
extension was developed. This extension can be used to reduce the complexity of
an Attack Tree. Tree branches don’t have to be created twice, if their content is
the same. And for working with countermeasures the last extension was developed.
Thus it is possible to track the changes of an countermeasure in an Attack Tree and
the success/failure-rate of an countermeasure can be analysed.

The next chapter shows how these extension are implemented in a new software
tool called Support Tool for Attack Trees. Also the functions of the tool will be
described, which are necessary for an meanful work with Attack Trees.

Chapter 4. Design and Implementation 19

Chapter 4

Design and Implementation

The Attack Trees and the new extensions are based on simple concepts. The shown
examples can be accomplished easily by a person with paper and pencil. But if the
situations become more complex, the operations become fast unmanageable. Also
possibility to try different attack profiles would be reduced drastically, as soon as
the expenditure becomes consciously.

With the help of a software tool, that is in the position to accomplish these
operations with one mouse-click, complex situations can be simplified. So the creator
does not have to keep all parameters in the eye any more during the work with Attack
Trees.

Since there is no non-commercial product for Attack Trees available, a main part
of this internship was to create a freeware. The decision to implement the tool in
Java was easy, because there is for almost every operating system a Java Runtime
available. Besides the extensions to Attack Trees described in Chapter 3 the program
should also have an open file format. For any extensions at a later time and an easy
understanding a XML-compatible format was selected and extended. Consequently
an exchange with other programs and tools is possible.

4.1 Functionality

Because the program should have the same graphical user interface on every system
the Java Swing library was used. Since a user might work with the program on
different operating systems an uniform user interface and behavior is advantageous.
Accordingly, there is no need for an adaption phase. This has also the advantage that
different operating systems don’t need different source code for the graphical user
interface. Figure 4.1 shows the tool with the running example. The user interface is
divided into two main parts. On the left side are three option panels. The first panel
offers the set up of the value types and the according node operations. The second
panel offers the opportunity to change the view of the Attack Tree. Thereby, three
options are available. The different views affect the Attack Tree representation in

20 4.1. Functionality

the right part of the main frame. In order to obtain results quickly the Java JTree
functionality was used to display the Attack Tree in the List Tree View. This JTree
representation can be compared with the textual representation of an Attack Tree
mentioned in Section 2.2.2. Also the JTree functionality enables the use of mouse
interactions to manipulate an Attack Tree. The possibility of changing the view to
XML is also given. Therefore it is possible to see how an Attack Tree is represented
in the external file. Since this view isn’t intended to create and modify Attack Trees
it is primarily meanful for the developer. Nevertheless it is possible for others to
understand the file format that is used to represent an Attack Tree. An option for
displaying the Attack Tree in a graphical view is also prepared but not implemented
yet. A graphical view approaches the human feeling of a tree. The comprehension
of this method corresponds more the method of creating Attack Trees by pencil
and paper. This method will be probably the easily most understandable method.
However, the implementation timeframe was limited and for obtaining a working
software tool the List Tree View was chosen. The last box of the left side of the tool
offers the possibility to create an attack profile with its necessary resources.

Figure 4.1: The Program with the continuous Example

Chapter 4. Design and Implementation 21

Figure 4.2: Pop up Menus on a Leaf Node and an inner Node

4.1.1 Creating and Modifying Trees

Due to the lack of time and the easy adaption of the textual representation using the
Java JTree functionality the List Tree View was chosen for building and changing
the appearance of an Attack Tree. At each position of the tree changes are possible
to create individual Attack Trees. This is also necessary to modify parts of the
Attack Tree in later states of the development process. Thus, the edit functions
were realized with mouse accessible pop up menus. Because the edit functions differ
in LEAF nodes and AND/OR nodes two kinds of pop up menus were created (see
Figure 4.2). With this differentiation input errors of the users are eliminated. Since
the pop up menus depend on the current underlying node only this node is affected
by changes of the user. Outside of the tree listing no pop up menus are available.

If a tree is developed, the creator has to have always the ability to change the
structure of the tree. If new threats arise fast changes can be made and the tree
is adapted to the new circumstances. In order to comply with this some standard
editing functions were implemented. One is, that the creator is always able to change
the type of nodes. It is possible that an AND node can be changed to an OR node
or vice versa. Since new nodes can’t be added to LEAF nodes, a LEAF node can be
changed to an AND or OR node. Now, expansions at these positions with AND, OR
and LEAF nodes in the tree are possible. Consequently it is possible to change an
AND/OR node to a LEAF node to finalize a branch of an Attack Tree. Of course,
the renaming of node names is an implemented function too.

To implement the Confluent Branches extension mentioned in Section 3.2 it has
to be differentiated between LEAF-nodes and AND/OR nodes. AND/OR nodes can
be connected to every other node or leaf in the tree – except the nodes in the same
layer or children and parents of the node (since a connection is already present). A
special case is the connection between a node and a leaf in a lower layer1. Usually
the direction of a connection is established from a lower to a higher layer but in

1Lower levels are closer to the top of the tree and higher levels are further accordingly

22 4.1. Functionality

Figure 4.3: Connection from a Node to a Leaf of a lower Layer

this case the lower leaf node is pulled down in the tree and the leaf becomes a child
of the node (see Figure 4.3). Since it is not possible to display graphs in a JTree
the confluent branches are split and displayed at each part of the tree. This is
accentuated in the JTree through the notice [confluent branch] after the name of the
leaf and node respectively. If a graphical view is implemented later this problem is
solved. Internally the program handles the confluent branches as one unit. If the
creator changes something at one position of a confluent branch in the List Tree View
the changes are automatically realized at the other parts. Thus, it doesn’t matter
at which position of the confluent branch changes are made.

In opposition to the AND/OR nodes, connections from a LEAF node are only
possible to nodes of a lower layer. Of course except their parents, since these con-
nections are already present. Since LEAF nodes are the last elements of a branch
they cannot be connected to nodes or leaves at a higher level. If a connection to a
node at a higher level should be established the order has to be reversed and the
case mentioned in the paragraph above arises (Figure 4.3).

To complete the construction functionality the pop up menus support the deletion
of parts of the tree. Since modifying a tree is necessary in the development phase this
standard editing function was implemented. Besides the removal of a single LEAF
node it is possible to delete whole branches of the tree. For this reason it has to be
differentiated between the deletion functions. On the one hand only the sub nodes
are deleted, and on the other hand all sub nodes and additionally the node which is
the starting point of the removal are deleted. In both cases the deletion of the sub
nodes and leaves is done recursively. If a sub node is part of a confluent branch the
program only deletes the connection between the nodes. Thus, the other parts of the
tree still can use the old joint nodes and leaves. This function is consequently suitable
for the disintegration of confluent branches. The advantage of the second deletion
function is the saving of two additional steps for the deletion of the starting node.
Without this function the sub nodes and leaves have to be deleted first and than the
starting node has to be converted into a leaf which has to be deleted afterwards.

To realize the Defense Node extension the program was enhanced to highlight

Chapter 4. Design and Implementation 23

Figure 4.4: Dialogs for Adding Value Types

nodes and leaves in a different color in the Java JTree. This accentuation was done
to help the users to recognize fast the different kind of nodes. Thereby, these nodes
and leaves are internally marked as defenses. To create a Defense LEAF a leaf is
created and provided with resources, which correspond to a defense. Afterwards,
the leaf is marked as a defense. The creator has to examine again, which values and
markings make sense.

During the creation process of an Attack Tree it may happen that a node is
highlighted in red. This behavior indicates that this branch of the tree has no leaf
node and thus there is no calculation possible in this part of the tree.

To set up resources in the LEAF nodes their types have to be defined before.
How this is managed will be demonstrated in the next section.

4.1.2 Add Values to the Tree

To modify values in the leaves of the Attack Tree the type of the values has to be
defined first. For example, the cost for the actions, the time which is needed for an
action, whether one needs special equipment for an action, the skill level which is
needed can be added and so on. The number of possible properties is not limited.
The more properties are defined the better an attack profile can be adjusted to an
attacker later.

The value type can adopt boolean and continuous values (see Figure 4.4). As
AND and OR formulas the operations mentioned in Section 3.1 are available. Fur-
thermore a default value for each type has to be assigned. This value is automatically
set for the leaf nodes in the construction phase until it is changed by the user. Thus,
values are always present in the tree and the automatic calculation can take place
without restrictions. Without this default value the automatic calculation process
returns errors, because input data for the calculation is missing. For an flexible
behavior new value types can be added at a later time without affection of the cal-

24 4.1. Functionality

culation process. However, it is unfavorably that the creator does not know at a
later time, which leaves he already provided with new, updated values. A possible
solution shows Section 6.2.

If a non-boolean value type is chosen two alternatives are available. The values
can adopt the LONG data type or the DOUBLE data type like they defined in
Java. Since INTEGER is part of the LONG data type and FLOAT is part of the
DOUBLE data type only this two options are available. These data types were
selected, in order to ensure a certain accuracy of the values. In the non-boolean
cases a lower and upper bound can also be set for values. Thus, the possible input
values can be restricted. For example, the costs for the actions in a leaf can be
only set between 100 and 200 euros. Both bounds are optional properties. Only one
bound is also allowed, accordingly.

4.1.3 Automatic Calculation in an Attack Tree

At the point where a value type is set, the calculation in the tree is done automat-
ically. Thereby, each value type is regarded independently. If the mouse is moved
over the AND/OR nodes in the JTree the calculated values can be seen in a tool tip.
The values in the LEAF nodes can also be reviewed in a tool tip. If all values would
be shown directly in the tree listing, the overview is lost fast and the tree would be
enlarged unnecessarily.

Now it is possible to know what resources are necessary to achieve the goal in
the root node or the subgoals in the AND/OR nodes. All branches in the tree
have to end with at least one leaf node for an successful calculation in the entire
Attack Tree. If more than one value type for the nodes is present the values in
the AND/OR nodes can originate from different sub nodes or leaves. The program
chooses the best value depending upon the AND/OR Formula for each value type
(Money, Time, Equipment,...). In that way it is possible, that, for example, for an
AND/OR node the money is taken from another child than for the time.

This automatic calculation offers an general overview of the necessary resources
in the nodes. Since values can originate from different nodes the values shown in the
tool tip are only suited if the values are regarded individually.

4.1.4 Creating Attacks

If the profile of an attacker is known or a profile should be tested, a special attack from
the intruders point of view can be created. In a mask (see Figure 4.5) the properties
of the attacker can be specified, for example that the attacker has special equipment
and 1000 euros available (the attack should cost below 1000 euros). The dialog
contains a panel for each value type, where the user can specify the attributes of an
attack profile. Besides true or false for boolean value types there is the possibility
to define non-boolean values more detailed. For this purpose an upper and a lower

Chapter 4. Design and Implementation 25

Figure 4.5: Mask to set the Profile of an Attacker

limit can be specified. Additionally, it can be specified whether the borders are also
included into the profile or not. That allows to adapt profiles in every detail to the
respective needs.

To set a profile at least one option has to be activated. All matching nodes are
highlighted in the JTree listing in a light green color. Now the program uses all light
green highlighted nodes and leaves to check if at least one highlighted path from
the root node to a leaf node is possible. If this applies an attack is possible for this
special profile of an attacker. If at least one path is available the functionality to
recompute the tree only with the matching paths exist. Thus, this offers the Attack
Tree creator to receive a view which is only directed toward the specified attack. In
this case all nodes which are not a part of an attack path are cut off. Afterwards
the nodes in the tree are recalculated and displayed in a new JTree. In this new
tree nodes and leaves can also be added. Because this tree is meant to show special
attacks matching to a profile all new added leaves and nodes are automatically set
as defense nodes and defense leaves respectively. According to this only leaf nodes
can be changed and new defenses can be added at this position of the tree. This
view also provides the functionality to save this part of the tree. If the complete
tree should be displayed again, both trees are combined. All new defense nodes and
leaves are part of the original tree, too.

With this functionality the user has the opportunity to check every possible
attack profile. Thereby, no limitations are present for the creation of an attack
profile. Thus, the user can be prepared for new attackers within shortest time.
Subsequently, countermeasures can be seized immediately if necessary.

The next chapter analyses special cases of attack profiles and the calculation
process. Potential effects and solutions will be shown.

26 4.2. File Format: XML

4.2 File Format: XML

Since there should be the possibility to use the Attack Trees in other programs and
tools, an open and easy reviewable representation is advantageous. Today the Ex-
tensible Markup Language (XML) [13] is used for most different purposes in many
different application areas. ”The XML is a W3C2-recommended general-purpose
markup language for creating special-purpose markup languages. Its primary pur-
pose is to facilitate the sharing of data across different systems, particularly systems
connected via the Internet.”[26] For XML-data exists the possibility to create a Doc-
ument Type Definition (DTD) for a validation process. With the DTD an own
definition for a file format for Attack Trees is feasible. This has the advantage that
different programs can use the same validated file to work with Attack Trees. Since
XML is very popular there are many libraries for different programming languages
available.

4.2.1 The GraphML File Format

Because Attack Trees were extended with the Confluent Branches functionality dur-
ing this internship the tree obtains properties of a graph. Consequently a XML
based graph file format was required and it turned out that GraphML has the best
requirements for the program. GraphML is described as follows on the GraphML
homepage: “GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a graph and a
flexible extension mechanism to add application-specific data.”[14]

The convenience of this XML file format is the independent declaration of nodes
and edges. This allows extensions of the graph in arbitrary places of the file format.
For this purpose each node and each edge are indicated individually in the graph.
To avoid mistakes while building up a graph, unique identifier can be assigned as
attributes to the nodes and edges. Contrary to the other elements of the graph
definition the unique identifiers are not optional for the node elements. This is
necessary, since an edge must be determined clearly by its two end points, which
correspond to the unique identifiers of the nodes in the same graph. A graph could
contain directed and undirected edges. To avoid the declaration of each edge, a
global default value has to be set. If several edges should differ from default value,
they can be assigned with an addional attribute for the edge direction.

To define properties of the graph key elements have to be declaired inside the
XML structure. Like the other elements the properties definition has also an unique
identifier. Furthermore an unique name of the property and its type have to be set.
Thereby value types like boolean, int, long, float, double or string can be adopted.
They are defined like the data types in Java. Finally, a domain can be specified.
Accordingly it can be indicated whether the properties refer to the nodes, edges or

2World Wide Web Consortium

Chapter 4. Design and Implementation 27

<?xml version="1.0" encoding="UTF-8"?>

<graphml>

<key id="d0" for="node" attr.name="weight" attr.type="double"/>

<key id="d1" for="edge" attr.name="color" attr.type="string">

<default>blue</default>

</key>

<graph id="G" edgedefault="undirected">

<node id="n0">

<data key="d0">2.0</data>

</node>

<node id="n1"/>

<node id="n2"/>

<node id="n3"/>

<edge id="e0" source="n0" target="n1">

<data key="d1">yellow</data>

</edge>

<edge id="e1" directed="true" source="n0" target="n2"/>

<edge id="e2" source="n1" target="n3"/>

<edge id="e3" source="n2" target="n3"/>

</graph>

</graphml>

Figure 4.6: GraphML example with all properties

the graph. Like the edges the properties can also be set up with default values.
Besides them the default values for the properties are optional. If an edge, node
or graph element should be specified with an property an element has to be nested
inside the structure element. Thereby a reference to the property identifier must be
established, too.

Figure 4.6 shows all properties together in one simple example. As there can be
seen the example consists of four nodes which are connected – up to one – with
undirected edges. Also two properties are defined. One for the nodes and one for
the edges. Thus, for the nodes a weight is described which accepts data values of
the type double. The property for the edges describe the color. Besides the data
type string the property has a default value which is set to blue. Inside the graph
structure definition one edge exists which varies from the default value. Accordingly
edge e0 is set to yellow. Since no default value is available for the nodes only node
n0 has a value. Figure 4.7 shows a schematic representation of this XML example.

28 4.2. File Format: XML

Figure 4.7: Schematic Representation of the XML Example

4.2.2 Extensions and Definitions

The GraphML format provides a good basis for the XML representation of Attack
Trees. To integrate the new extensions mentioned in Chapter 3 the GraphML format
has to be extended to support these new improvements. Also some definitions for the
input data have to be made and some features of the program have to be supported.

Every Attack Tree representation has at least three property definitions. They
are necessary for the structure of an Attack Tree. The first one always describes the
type of a node. Thus AND nodes, OR nodes and LEAF nodes can be differentiated.
The second property is the definition for the node name. Through this the names
for the nodes and leaves are assignable. The last must-have property describes the
kind of nodes and leaves. It defines if a node is an attack node or a defense node.
By default the nodes are defined as attack nodes.

If new values for the actions are defined – like the costs, time or the need
of equipment – a new property is defined and it is extended by 5 sub elements.
Besides the sub element default, the elements and, or, lowerbound and upperbound
are necessary. The values of the and and or sub elements describe the formulas in
the AND and OR nodes. In opposition to the original GraphML definition, the data
types are restricted and can only adopt three values: boolean, long and double. This
was adapted to the program-specific peculiarities mentioned in Section 4.1.2. If long
or double is chosen the XML-file also provides the possibility for bordering the input
values. Thus only values between the lowerbound and upperbound are possible. If
one or both bounds are not set, the value NULL is written into the XML-file. Note
that if borders are present, the default value has to be in the range of the bounds. In
the boolean case both bounds are set to NULL. Also as default values only TRUE
or FALSE are accepted. Of course only the logical operations mentioned in section
3.1 are possible.

Since the first two properties have always no default values a node element has at
least two data sub elements. The one with the value type and the one with the node
name. If leaves with values which differ from the default values are present in the
properties the node elements have further data sub elements with the corresponding
data values. To prevent errors, all elements are provided with references to the
unique identifiers.

Chapter 4. Design and Implementation 29

Appendix A.1 shows a complete XML example of two AND connected leaves,
which contain one boolean and one non-boolean value. So all possibilities can be
seen.

30

Chapter 5

Test of the Tool

To evaluate the program some general and special tests were done. Thereby the
tool was examined in general. The realisation of the new extensions mentioned in
Chapter 3 and the calculation process have been analysed. Thus arisen problems
and limitations and their possible solutions were pointed out.

5.1 General

First the general handling of the program was analysed. This contains the starting
process of the program and the possibilities to load and save Attack Trees. In
addition the creation process of an Attack Tree was observed. These investigations
were made in order to check the usability of the software tool. For this purpose all
program-specific functionalities were tested, whereby this did not only happened in
an arranged order.

Since the program needs different libraries which are not part of the Java Run-
time, the program is delivered in a Java Archive (JAR-file). Into this Java Archive
all necessary libraries were included. Consequently it is possible that every user – no
matter if beginner, advanced or professional – can access the program with only one
command. The only requirement is a proper installed Java Runtime in Version 1.4
or above.

Immediately after a Attack Tree document is created, the functionality to save
the document is offered. This can be done in every phase of the work with the tool.
If the program or a document is closed or a new file should be created, the program
offers to save the old document. Consequently it cannot happen that a document is
closed by mistake, without the possibility to save the document first.

If a new document is created or an old file is opened the user can change the
structure of the tree in the List Tree View. Thereby changes are converted interme-
diately. Also theses changes are transferred intermediately in the XML code. In that
way it is possible for the user to pursue at each time the appropriate XML structure.

Chapter 5. Test of the Tool 31

In addition only the view must be changed.

To change the structure of the tree the two pop up menus are available. They offer
the functionality described in Section 4.1 and they adapt to the existing conditions.
For the two types of nodes, their functionality differs. Only the allowed functions
are visible. Thus the possibility of accomplishing invalid actions does not exist.
Consequently only regular Attack Tree could be created and the user has to be
unconcerned about it.

5.2 Extensions

As structural extension the functionality of Confluent Branches were implemented
(see Section 3.2). The user has the ability to connect different nodes. With the notice
”Confluent Branch” and the unique numbering in the List Tree View the Confluent
Branches are clearly identified. Also the user has the functionality to annihilate the
connection by using the standard deletion functions in the corresponding branches of
the tree. In order to prevent errors during the creation of connections only meaningful
and/or regular connection possibilities are offered to the user. Thus the user possesses
control of the entire creation process and all input errors of the user are prevented.

To combine node values with different calculation procedures the program sup-
ports much more formulas as Bruce Schneier described in his paper. Therewith at
any time the formulas can be changed in the program. This ability is available at any
point during the work with the Attack Tree tool. To create more exact predications
about the vulnerabilities or more exact attack profiles, the program offers the possi-
bility to add unlimited resources and the corresponding formulas to the nodes. Like
the formulas, new resources can be added anytime. Also the deletion of resources is
available at any time during the work with the tool. With this extension the user
also possesses complete control about this functionality of the program.

The Defense Nodes extension mentioned in Section 3.3 was realized by colorizing
the corresponding nodes in the List Tree View of the tool. Thus the user always
recognize the special type of a node. In order that Defense Nodes are effective, the
user has to have always the knowledge of what is necessary for defenses (what values
are at least necessary for a defense). Without this knowledge it might be possible
that some Defense Nodes are useless in the tree and they are effectless for prevention
of an attack accordingly.

5.3 Calculation Process

As mentioned in Section 4.1.4 the highlighting is done for nodes and leaves where
the values are calculated separately. This means that nodes could have values from
different sub nodes and sub leaves respectively. If a profile of an attacker is created,
all values of the matching nodes of the profile should originate from only one node if

32 5.3. Calculation Process

Figure 5.1: Solution of the undefined case

operations are present where only one value determines the result. To find matching
nodes and leaves, it has to be differed between operations where all sub values have
influence and operations where only one value has an influence.

In the case that only one value determines the result of an operation (minimum,
maximum, OR, NOR, XOR) the undefined case mentioned in Section 2.2.2 could
occur. The described example in that section has two OR-connected leaves where
the minimum operation is set for both values. Leaf one has the value five for the
time and value three for the money and leaf two has the value three for the time
and value five for the money. With the attack profile Cheapest Attack in shortest
Time it is not clear which leaf values determine the value of the root node. To solve
this case an ordering in the profile has to be established in the tool. This has to be
done always if more than one non-boolean value is present. Accordingly the money
might be set to a higher priority as the time in the example and the root node now
receives the values of leaf one (money: 3, time: 5 – see Figure 5.1). The ordering
function also eventuates if more than one profile matching sub element is available.
If a profile like Money below 6 and Time below 6 is present both leaves are matching
to the profile in the example. Due the fact that the money has a higher priority, leaf
one is taken for the values in the root node. Finally a node does not receive values
from different sub elements anymore.

In the case that more than one value determine the result of an operation (sum-
mation, average, product, AND, NAND) all sub nodes of a node have to match to
the attackers profile. If that is the case the node can also be tested if it matches
to the profile. Otherwise, if at least one node does not match, the whole branch
of the tree has no influence on the attack anymore. This problem is evident in the
current state of the tool. The highlighting process that marks matching nodes for
an attack profile, works with no respect to the formulas in the nodes. This leads to
the problem that the tool could find a path from a leaf node to the root even though
a formula is present where not all sub nodes match. In Figure 5.2 the problem is
demonstrated. The value of the two AND-connected sub nodes is calculated by the
summation formula. With the attack profile Value One greater than 5 the program
highlights sub goal 1 and the root node, since the highlighting process is done with

Chapter 5. Test of the Tool 33

Figure 5.2: Wrong highlighting of the tool

no respect to the formulas. But in this case the highlighting of the goal node mustn’t
eventuate. This has to be revised.

The following remarks refer to the example mentioned in Section 3.1. Thereby
values for the skill level and time are present in a node, and the operations are the
maximum for the skill level and summation for the time (see figure 5.3).

In this example the creator of the tree should know which operations for the
non-combining value (skill level) make sense. To achieve the root goal, sub goal one
and sub goal two have to be fulfilled. The time which is needed to fulfill the goal is
the summation of both children (it becomes 10 minutes) and the skill level takes the
highest value of the children (skill level 6). It would not be useful, if the skill level is
connected via a minimum operation. If only one sub goal needs equipment it would
be illogical too, if there is no need of any equipment to fulfill the goal.

If a minimum of one combining operation is present in a node, it has also influence
on attack profiles which depend on the values with non-combining operations. Thus,
the profile Minimum Skill Level highlights sub node one and the root node in the
example, since at least a skill level of six is needed to fulfill the goal.

Figure 5.3: Node with mixed operation-type values

34

Chapter 6

Conclusion and Further
Development

6.1 Conclusion

This internship was intended to get a deeper look into the field of Attack Trees.
Today, only one software tool for the work with Attack Trees is available. Since
the software tool is a commercial one, it is not suited for academic research. It is
not possible to change parts of the software or to extend the program with further
functionality. For this reason a new software tool was developed and implemented
which is open source and easily to extend.

Starting from the work of Attack Trees by Bruce Schneider, the internship was
intended to examine new possible extensions to Attack Trees. For that purpose
three extensions were analysed and implemented into the software tool. The first
one – the AND/OR Formulas – offers the possibility to connect nodes with addi-
tional different calculation formulas as Bruce Schneider described in his paper about
Attack Trees [1]. The Confluent Branches extension enhances the Attack Trees in
a structural way. Equal attacks, which are used in different branches of an Attack
Tree, can be connected. Consequently, changes at a node influence the connected
nodes too, what simplifies the working process. Finally, an extension – the Defense
Nodes – was investigated to add countermeasures directly in the Attack Tree.

To work with Attack Trees the software tool needed standard editing functions.
For this reason functions for adding, editing and deleting nodes and leaves were im-
plemented. Attack Trees can be simply created and modified. For a later reuse of
the Attack Trees a XML-based file format was developed and implemented. A XML-
based file format was preferred, because it is easy to understand and later extensions
are simply manageable. With the implementation of the three new developed exten-
sions the goals pointed out at the beginning of this internship were achieved.

Chapter 6. Conclusion and Further Development 35

To verify the behavior of the software tool some test were made. It turned out that
the new extensions produce some ambiguous constellations. Some of these cases
weren’t considered at the beginning of the internship. Consequently, some problems
arised with the calculation of attacker simulations. This is not unusual during the
development of a new software. However, the causes of these problems were found
fast. Due to the lack of time during the implementation phase of the internship
these problems were not fixed. But this document offers a good basis for solving
these restrictions. Section 6.2 explains how the tool can be enhanced with further
functionality and how it can be improved.

Nevertheless, a software tool offers some essential advantages in relation to the pen-
cil and paper method. Creating and editing of Attack Trees can be accomplished
substantially faster. If a big Attack Tree of a system is examined a software tool is
needed to keep the overview. The automatic calculation process of different resources
makes the effects caused by changes retraceable.

With Attack Trees the possibility exists to accelerate the process of securing a sys-
tem. An Attack Tree software tool supports the creation of complex trees. During
the creation process the user learns much about a system and one can find out possi-
ble vulnerabilities. However, the creator has to know what is going on in the system
and how the system works. This is the basis for the creation of useful Attack Trees.
With the potential to simulate an attack, it is possible to react fast and to add appro-
priate countermeasures. Also attack paths can be found which are not the obvious
ones. For example, to prevent an attacker of reading a PGP encrypted message of a
computer system it could be more effective to be sure that no key logger is installed
than to increase the key length of the PGP algorithm [1]. A software tool can give
support in finding these possible attacks and paths, respectively.

Finally, this internship shows that Attack Trees offer a large potential. As on the
basis of the extensions can be seen, still more opportunities are behind the Attack
Tree method. However, as the AND/OR Formulas extension shows, more function-
ality could implicate larger problems. The initially very easily understandable and
manageable Attack Trees become more complex by the extensions. Accordingly, the
user must always know whats behind the extensions and how to deal with them.

6.2 Further Development

Developing a software tool is always a process. During the work some new ideas
and possible changes of parts of the program can arise. This was the case in the
programming phase of this internship. Due to the lack of time they were not be
implemented. Following some general ideas for a further development are listed.

36 6.2. Further Development

• Revise of the calculation process to solve the experienced limitations mentioned
in Chapter 5. Before new enhancements could be added the problems found
during the test period of the internship have to be solved. This is the first and
most important step for the further development of the software tool.

• As described in Section 4.1.2 it is not possible to differentiate leaves which
are already updated with new values and leaves with the default value at first
sight. In order to call attention to this, the tool tips could be customized. For
example, a note can be added behind the value, if the default value is taken.

• Due to the lack of time there is no validation process of the input data in
the input dialogs. To prevent errors by entering false values this should be
one of the next steps within the development process of the software tool.
Accordingly, the borders (upper and lower bound) and data types must be
considered.

• The attack profile mask offers an opportunity to enhance the software tool.

– First, a rank has to be established within the attack profile criterias. This
is necessary to solve the undefined case mentioned in Section 2.2.2 and
Section 5.3.

– If a lower and/or upper bound is set for a non-boolean value type these
bound could be set as default value in the attack profile mask.

– Besides constraining a value type in the attack profile with a lower bound
and/or upper bound it might be convenient to use the minimum or the
maximum as attack criteria. Because the options of a lower bound and
upper bound can’t simulate a minimum or maximum attack path.

– Finally, a consideration might be worth to connect different attack crite-
ria not only via AND. For example, it could be possible to connect two
criterias as alternatives. If criteria 1 does not apply then use critera 2.

• Since the Attack Trees are saved in XML a validation of these files is possi-
ble. For example, with an adapted DTD file (Document Type Definition) the
software tool could check a file before it is loaded into the program. This is a
further step to prevent input errors.

• In the actual version it is not possible to move parts of the tree directly to
another branch. This can only be done by misusing the Confluent Branches
extension. A better and preferred solution is a drag and drop functionality in
the JTree view.

• As mentioned in Section 3.3 a different implementation of the Defense Nodes
extension might be possible. They could have relative influence to a node (e.g.
increase the value of a node by 40). If new attacks are added to these new
Defense Nodes the influence of these defenses is present anyway.

Chapter 6. Conclusion and Further Development 37

• As mentioned in Section 3.1 it might be possible to add more than two node
types (more than AND nodes and OR nodes). Since the formulas can be used
for both node types a third or fourth formula combination might be useful.
For this purpose the node types have to be named in a different manner and
additional nodes types should be added dynamically.

Besides these corrections and enhancements the software tool could be graded up
with additional functionality.

• For each leaf the path(s) to the root node could be displayed. For this reason
all nodes that are no longer required, can be cut off and the values can be re-
calculated. To consider are nodes which have values with combined operations
like AND, SUM, etc.

• After an attack profile is established and the attack is done a summarisation
could be given. The amount of possible attacks could be counted just like the
amount of the necessary steps for each attack path.

• An import function of Attack Trees could be implemented. The software tool
should be able to add the imported tree at any position in the Attack Tree.
However, the program has to check the value types and nodes types of both
trees for a proper import.

• Finally, the implementation of the Graphical View should be realized. This
view enables a better overview of an Attack Tree, because it is easier to conceive
the structure of an Attack Tree in a graphical view. Of course, all functions of
the List Tree View need to be implemented.

• The Graphical View offers to extend the software tool with further export
functions. For example, the tree could be saved in a graphical file format like
JPG or SVG.

If the corrections were made, the Attack Tree software tool can be used for
practical application. Until then, it should be accounted as a prototype. With the
information of this paper the restrictions, which arised during the development of
the software tool, could be handled. Afterwards the software tool can be equipped
with additional functionality, which will improve the work with the tool. Since there
were some inquiries concerning the software from different educational institutions,
one can expect an extended version of it in the near future.

38 6.2. Further Development

BIBLIOGRAPHY 39

Bibliography

[1] Bruce Schneier, Attack Trees, Dr Dobb’s Journal, December 1999
http://www.schneier.com/paper-attacktrees-ddj-ft.html

[2] CUUG Meeting; Tuesday, February 22, 2000;
http://www.cuug.ab.ca/CUUGsite99mar/past-meetings/meetings.99-00.html

[3] Philip E. Varner, A Security Analysis of VoteHere, May 11, 2001
http://www.cs.virginia.edu/~pev5b/writing/academic/thesis/

[4] Fault Tree Handbook, U.S. Nuclear Regulatory Commission, January 1981
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/

sr0492.pdf

[5] ARES Coporation, Risk Techniques, Fault Trees
http:

//www.arescorporation.com/ares/rm/rm_services_riskt_faulttrees.html

[6] Canadian Handbook on Health Impact Assessment, Chapter E: Methodologies
for technological risk Assessments (continued)
http://www.hc-sc.gc.ca/hecs-sesc/ehas/publications/canadian_handbook/

volume3/chapter_e_part3.htm

[7] IEE – Health and Safety Briefing 26b – Quantified Risk Assessment
Techniques – Part 2, Event Tree Analysis
http://www.iee.org/Policy/Areas/Health/hsb26b.pdf

[8] Oley Scheyner; Scenario Graphs and Attack Graphs; PhD thesis; Carnegie
Mellon University; April 14, 2004
http://www.milena.org/thesis/sg-ag.pdf

[9] Ramkumar Chinchani, Anusha Iyer, Hung Ngo, Shambhu Upadhyaya; A
Target-Centric Formal Model For Insider Threat and More; University at
Buffalo; October 12, 2004
http://www.cse.buffalo.edu/tech-reports/2004-16.pdf

[10] Saket Kaushik; Network Vulnerability Analysis Tool
http://www.isse.gmu.edu/~skaushik/nva/

http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.cuug.ab.ca/CUUGsite99mar/past-meetings/meetings.99-00.html
http://www.cs.virginia.edu/~pev5b/writing/academic/thesis/
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.arescorporation.com/ares/rm/rm_services_riskt_faulttrees.html
http://www.arescorporation.com/ares/rm/rm_services_riskt_faulttrees.html
http://www.hc-sc.gc.ca/hecs-sesc/ehas/publications/canadian_handbook/volume3/chapter_e_part3.htm
http://www.hc-sc.gc.ca/hecs-sesc/ehas/publications/canadian_handbook/volume3/chapter_e_part3.htm
http://www.iee.org/Policy/Areas/Health/hsb26b.pdf
http://www.milena.org/thesis/sg-ag.pdf
http://www.cse.buffalo.edu/tech-reports/2004-16.pdf
http://www.isse.gmu.edu/~skaushik/nva/

40 BIBLIOGRAPHY

[11] Jan Steffan, Markus Schumacher; Collaborative Attack Modeling; Darmstadt
University of Technology; 2002
http://www.ito.tu-darmstadt.de/publs/pdf/sac2002.pdf

[12] Prof. Dr. Felix Gärtner; Verlässliche Verteilte Systeme 1, Angewandte
IT-Robustheit und IT-Sicherheit, Vorlesung im Wintersemester 2004/2005
http://www-i4.informatik.rwth-aachen.de/lufg/teaching/ws2004/dds/

08security-metrics_23.11.2004.pdf

[13] Extensible Markup Language (XML) 1.0 (Third Edition), W3C
Recommendation 04 February 2004
http://www.w3c.org/TR/2004/REC-xml-20040204/

[14] The GraphML File Format
http://graphml.graphdrawing.org/

[15] Understanding Risk Through Attack Tree Analysis; Amenaza Technologies
Limited; 2003
http://www.amenaza.com

[16] Virtuelles Software Engineering Kompetenzzentrum; Risikoanalyse
http://www.software-kompetenz.de

[17] Failure Modes and Effects Analysis (FMEA); Semicon FarEast; 2004
http://www.semiconfareast.com/fmea.htm

[18] Failure Mode and Effect Analysis; Wikipedia; 2005
http://en.wikipedia.org/wiki/FMEA

[19] Martin Fränzle; Eingebettete Systeme I – Scriptum zur Vorlesung im
Wintersemester 2001/2002; Carl von Ossietzky Universit¨at Oldenburg
http:

//ca.informatik.uni-oldenburg.de/~fraenzle/ES-I-WS0102/skript-ES-I.pdf

[20] Fault Tree Analysis; Texas Workers’ Compensation Commision, Workers
Health & Safety Division, Safefy Education & Training Programs
http:

//www.twcc.state.tx.us/information/videoresources/stp_fault_tree.pdf

[21] Using Fault Trees to Identify Potential Faults in Critical Systems; Relex
Software Corporation; 2005
http://www.relexsoftware.com/resources/art/art_fta.asp

[22] SecureIT ree – Attack Tree-based modeling software; Amenaza Technologies
Limited; 2003
http://www.amenaza.com

http://www.ito.tu-darmstadt.de/publs/pdf/sac2002.pdf
http://www-i4.informatik.rwth-aachen.de/lufg/teaching/ws2004/dds/08security-metrics_23.11.2004.pdf
http://www-i4.informatik.rwth-aachen.de/lufg/teaching/ws2004/dds/08security-metrics_23.11.2004.pdf
http://www.w3c.org/TR/2004/REC-xml-20040204/
http://graphml.graphdrawing.org/
http://www.amenaza.com
http://www.software-kompetenz.de
http://www.semiconfareast.com/fmea.htm
http://en.wikipedia.org/wiki/FMEA
http://ca.informatik.uni-oldenburg.de/~fraenzle/ES-I-WS0102/skript-ES-I.pdf
http://ca.informatik.uni-oldenburg.de/~fraenzle/ES-I-WS0102/skript-ES-I.pdf
http://www.twcc.state.tx.us/information/videoresources/stp_fault_tree.pdf
http://www.twcc.state.tx.us/information/videoresources/stp_fault_tree.pdf
http://www.relexsoftware.com/resources/art/art_fta.asp
http://www.amenaza.com

BIBLIOGRAPHY 41

[23] Denial-of-service attack; Wikipedia; 2005
http://en.wikipedia.org/wiki/Ddos

[24] RISK MANAGEMENT: HAZARD ANALYSIS AND FMEA; mdi Consultants
INSIGHT REPORT No. 11 Vol. 4; 2001
http://www.mdiconsultants.com/Section_NI/Insights/insight_V4_is11.htm

[25] Process Analysis Tools: Failure Modes and Effects Analysis (FMEA);
American Society For Quality
http://www.asq.org/learn-about-quality/process-analysis-tools/

overview/fmea.html

[26] XML; Wikipedia; 2005
http://en.wikipedia.org/wiki/XML

http://en.wikipedia.org/wiki/Ddos
http://www.mdiconsultants.com/Section_NI/Insights/insight_V4_is11.htm
http://www.asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://www.asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html
http://en.wikipedia.org/wiki/XML

42 BIBLIOGRAPHY

Appendix A. Examples 43

Appendix A

Examples

A.1 XML Example

Example referring from section Section 4.2.2:

1 <?xml version ="1.0" encoding ="iso -8859 -1"? >
2 <graphml >
3 <key id="0" for="node" attr.name="type" attr.type=" String" />
4 <key id="1" for="node" attr.name="name" attr.type=" String" />
5 <key id="2" for="node" attr.name=" attacktype" attr.type=" String">
6 <default >attack </default >
7 </key >
8 <key id="3" for="node" attr.name="Cost of Attack" attr.type="long">
9 <default >20</default >

10 <and >SUM </and >
11 <or>MIN </or>
12 <lowerbound >5</lowerbound >
13 <upperbound >NULL </upperbound >
14 </key >
15 <key id="4" for="node" attr.name="No Equipment" attr.type=" boolean">
16 <default >FALSE </default >
17 <and >AND </and >
18 <or>OR </or>
19 <lowerbound >NULL </lowerbound >
20 <upperbound >NULL </upperbound >
21 </key >
22 <graph id="0" edgedefault =" directed">
23 <node id="0">
24 <data key="0">AND </data >
25 <data key="1"> Goal for Attack </data >
26 </node >
27 <node id="1">
28 <data key="0">LEAF </data >
29 <data key="1"> Attack Leaf </data >
30 <data key ="3">50</data >
31 </node >

44 A.1. XML Example

32 <node id="2">
33 <data key="0">LEAF </data >
34 <data key="1"> Defense Leaf </data >
35 <data key="2">defense </data >
36 <data key="4">TRUE </data >
37 <data key ="3">10</data >
38 </node >
39 <edge source ="0" target ="1" />
40 <edge source ="0" target ="2" />
41 </graph >
42 </graphml >

In Figure A.1 the result can be seen. Since a defense node was added the costs
of the attack increase by 10 and for an intruder who has no equipment and only 50
euros available the attack is not possible. Note that for programming all IDs have
to be positive integer values. Also all non-boolean values have to be positive.

Figure A.1: Result of the XML Example

Appendix A. Examples 45

A.2 FMEA Table Example

Figure A.2: Example of a FMEA Table

This example is taken from [25].

46

Appendix B

Logical Operators

B.1 Tables

Input 1 Input 2 Output
false false false
false true false
true false false
true true true

Table B.1: Table for the AND Operator

Input 1 Input 2 Output
false false false
false true true
true false true
true true true

Table B.2: Table for the OR Operator

Input 1 Input 2 Output
false false true
false true true
true false true
true true false

Table B.3: Table for the NAND Operator

Appendix B. Logical Operators 47

Input 1 Input 2 Output
false false true
false true false
true false false
true true false

Table B.4: Table for the NOR Operator

Input 1 Input 2 Output
false false false
false true true
true false true
true true false

Table B.5: Table for the XOR Operator

	Declaration
	Overview
	Parties involved

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Tasks
	1.3 Expected Results
	1.4 Thesis Structure

	2 Risk Analysis
	2.1 Forward-arranged Analysis Techniques
	2.1.1 Failure Modes and Effects Analysis
	2.1.2 Event Tree Analysis

	2.2 Backward-arranged Analysis Techniques
	2.2.1 Fault Tree Analysis
	2.2.2 Attack Tree Analysis

	3 Attack Tree Extensions
	3.1 Extension: AND/OR Formulas
	3.2 Extension: Confluent Branches
	3.3 Extension: Defense Nodes

	4 Design and Implementation
	4.1 Functionality
	4.1.1 Creating and Modifying Trees
	4.1.2 Add Values to the Tree
	4.1.3 Automatic Calculation in an Attack Tree
	4.1.4 Creating Attacks

	4.2 File Format: XML
	4.2.1 The GraphML File Format
	4.2.2 Extensions and Definitions

	5 Test of the Tool
	5.1 General
	5.2 Extensions
	5.3 Calculation Process

	6 Conclusion and Further Development
	6.1 Conclusion
	6.2 Further Development

	Bibliography
	A Examples
	A.1 XML Example
	A.2 FMEA Table Example

	B Logical Operators
	B.1 Tables

